Converting DFA to Regular Grammar

Pre-requisite knowledge: deterministic finite automata, non-deterministic finite automata, regular
expressions, regular languages, and regular grammars.

A DFA may be easily converted into a regular grammar. Let us consider the following DFA which models
one round of the classic game Rock-Paper-Scissors. The DFA accepts two-lettered inputs where the first
letter is Player 1’s input and the second letter is Player 2’s input. The input alphabet is {R, P, S}
representing rock, paper, and scissors. For example, RP represents rock for Player 1 and paper for
Player 2; this string ends in a final state in which Player 2 wins since rock crushes scissors.

. {w)
a Player1-Wins
Player1-Rock

Player1-Scissors|
Player2-Wins|

Try It! Open the file RockPaperScissors_DFA.jflap in JFLAP. Using Input > Multiple Run, run the valid and
invalid inputs: PP, SP, RS, RSP, RSSP, and RT.

Converting a DFA, defined by M = (Q, %, §, qo, F), to a regular grammar, defined by G = (V, T, S, P) is
straight forward. The rules are summarized below:

1. The start symbol of the grammar is qo, the non-terminal corresponding to the start state of the
DFA.

2. For each transition from state g; to state g; on some symbol ‘a’, create a production rule of the
form: g, —aq;.

3. For each state q; of the DFA which is a final state, create a production rule of the form: g; — A.

Next, we work on converting the DFA into a grammar. Using the DFA above, we convert each transition
(between two states) into a production rule for the resulting regular grammar. Since there are twelve
transitions, we end up with twelve production rules:

qo—>Ra:1|Pagz|Sas

d1—>S0qs | Ras | Pas

d2—=>Ras|Pas|Sas

a3 —=>Pas|Sas|Ras

To add the transitions to the three final states, we also include the following transitions:
s — M\,

as — A,

q6—>A.

To complete the regular grammar definition, G = (V, T, S, P), we have
V ={qo, a1, A2, 93, 94, As, e},

T={R, P, S}

S=do,

P={qo—=RQq1|Pa2]150301—=Sdsa|Ras | Pgs, 42 —=>Raa | PQs | Sqs, a5 —=Pas | Sqs | Ras qs — A,
QS_>7\:C|6_>)\}-

Questions to think about:
1. Doesthe grammar accept PR?
Answer: Yes the grammar accepts PR using the derivation qo = P q, = PR q; = PR.
2. Does this grammar accept PRP?
Answer: No, the grammar does not accept PRP.
3. Isthe resulting grammar a regular grammar?

Answer: Recall that a regular grammar is either right- or left-linear and since the resulting
grammar is right-linear, the grammar is a regular grammar.

4. Many of you may have seen the episodes of the television series “Big Bang Theory” where they
mention an extension to the Rock-Paper-Scissors game called Rock-Paper-Scissors-Lizard-Spock
(http://en.wikipedia.org/wiki/Rock-paper-scissors-lizard-Spock). Create a DFA for this expanded
game. Convert the DFA to a regular grammar as we did in this module.

Try it! Open the file RockPaperScissors_DFA.jflap if it is not loaded in JFLAP. Convert the DFA to a
grammar by selecting Convert > Convert to Grammar. You may perform the conversion one step at a
time. Click Step and the first grammar rule is generated on the right-hand pane, (q3) -> R(g6). Repeat
the process a few more times paying close attention to each new rule generated. Finish the conversion

by clicking Step to Completion. The resulting grammar should be similar to the one that was developed
earlier with each variable surrounded by ().

Questions to think about
1. Can all DFAs be converted to a regular grammar (right-linear) with the given algorithm?

Answer: Yes. Using the algorithm, any DFA may be converted to a regular grammar. Every DFA
has exactly one start state; this translates to the start variable for the grammar. Each transition
in the DFA becomes one production rule in the grammar. A DFA must have at least one final
state which allows for the derivation to terminate.

Reference:

Peter Linz, “An Introduction to Formal Languages and Automata” 5t edition, Jones and Bartlett, 2011.

